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Formulas are given allowing the calculation of electronic molecular energy up to the third-order 
in a perturbation theory using fully localized bond orbitals with zero differential overlap between them. 
The method is applied to small molecules using the CNDO approximations of Pople and Segal. 

Es werden Formeln angegeben, die die Berechnung der Energie yon Molekiilen bis zur 3. Ordnung 
in einer StSrungstheorie erlauben. Der Rechnung liegen dabei vSllig lokalisierte Bindungsorbitale und 
die ZDO Niiherung zugrunde. Die Methode wird auf kleine Molektile angewandt, wobei die CNDO- 
Approximationen von Pople und Segal benutzt werden. 

Rappel des formules permettant le calcul de l'6nergie 61ectronique d'un systame mol~culaire au 
troisi+me ordre de la th6orie des perturbations/t l'aide d'une base d'orbitales de liaison totalement 
localis6es et /t recouvrement diff6rentiel nul. Application fi de petites mol6cules dans le cadre des 
approximations de la m&hode CNDO de Pople et Segal. 

1. Introduction 

In  preceeding papers [1, 2] we have developped a method based on the use 
of bond  orbitals and  pe r tu rba t ion  theory for the calculat ion of the ground state 
energy of a molecule. For  future reference we call this method:  PCILO,  that  means:  
Per turbat ive configurat ion interact ion using localized orbitals. The usefullness 
and  power of this method  has been il lustrated on re-electron systems in the semi- 
empirical  approach [-2]. In  this paper  we want  to gather the general formulas for 
the energy up to the thi rd-order  in the zero-differential overlap approximat ion.  
These are the working formulas used in the compute r  program, and may be useful 
for anyone  interested in the applicat ion of our  method,  especially for large systems 
(20 to 100 electrons). The use of these formulas will be i l lustrated on a-electron 

systems in the Pople-Segal C N D O  framework. 
Bond orbitals appear ing  in the formulas do no t  belong to a specific type. We 

just  require that  they satisfy a zero differential overlap property, That  means that  
bond ing  b o n d  orbitals are defined on separate domains.  This s trong condi t ion  
can be released on each physical b o n d  1 where we can just  require or thogonal i ty  

,~ NATO Postdoctoral Fellow in Science 1967--1968. 
1 In this paper we introduce three different bond terminologies: a physical bond is the region of 

space between two neighbour atoms where electrons are concentrated, a chemical bond is a pair of 
electrons assuming a physical bonding between two atoms, we speak of a- or ~-electron chemical 
bonds. A chemical bond will be often simply called a bond, a bond-orbital is a function essentially 
defined between two atoms connected by chemical bonds. In our formulation bond-orbitals are often 
simply called bonds. 
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between bonding orbitals. We shall not present formula for this case. To each 
bonding bond orbital corresponds an orthogonal antibonding bond orbital. 

In a basis of atomic hybrids, bond orbitals are built as linear combinations of 
distinct hybrids two by two. Orthogonality of bond orbitals can be achieved by 
orthogonalisation of hybrids or, in an approximative way, by choosing hybrids 
according to maximum overlap criteria [3--5]. Zero-differential overlap between 
bond orbitals is achieved either by ZDO assumption for hybrids, as in the semi- 
empirical methods, or by truncation [6, 7]. 

To each bond orbital i we associate a virtual bond orbital i**; according to 
our hypothesis the only non zero-molecular bielectronic integrals are of the type 

i',i"=i or i*, 
(i~fli"j") where (1) j',~f'=j or j*.  

The perturbation development can be formulated either in a basis of configurations 
built on the bond orbitals or in the corresponding basis of singlet spin eigen- 
functions. Up to the third order in energy we need only mono- and di-excited 
configurations. As a rule we represent an excited configuration by replacing in the 
ground state determinant the empty spin-orbital by the occupied excited one, at 
the same place. 

( ~ )  1 - 

- i . . . j * i . . . I ,  

~ - / - -  ~ ['"J*i'"kl*'"l" 

This is the convention used for example by Pople [6]. It has the advantage of 
allowing the spin eigenfunctions tO be written in a symmetric way: 

�9 1 j *  

1~,;*,. 1 #(j*,*~+(7*l*~ (j*r*~+(f*T*); 
-,k = ~[\~s \~/-/+ \~-/ \ g / J  (3) 

and 

l~P~2t*'--21~J(\ ik ]+~--'~-)-\-~k-] \ ~ - ] -  \ -[k ] \ ik ]J (4) 

The four configurations occuring in 1-ik~J*Z* have the same matrix element with 
the ground state configuration: (ikij*l*), the exchange integral (ikll*j*) being 

zero if the first one is different from zero. Then, the configurations \--f~--] and 

* In minimal basis sets no virtual orbital corresponds to the lone pairs. However one may use 
the general formalism developped hereafter without any caution if one considers the lone pair as a 
bonding orbital defined with a conventional atomic orbital removed to infinity, but completely polarized 
on the actual lone pair. Then the corresponding antibonding molecular orbital has a zero coefficient 
on the lone pair and its use in the configuration interaction has absolutely no effect, except to simplify 
the programming. 
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'[*j* \ 
-f~--) have a zero interaction with the ground state, this interaction being equal 

to (ikl l'j*). It follows that the second diexcited spin eigenfuncti0n 1~1 ,  does not 
interact with the ground state and therefore does not play any role in the energy 
expression up to the third order, formulated in a spin eigenfunctions basis. 

Though these simplification are significant, the formulation of the perturbation 
series is more involved in a spin eigenfunctions basis than in a configuration basis. 
This is also true for programming an electronic computer. This is the reason why 
we use a configuration basis (as in our preceding works [14]). It has the traditional 
desagreement of enlarging (formally) the basis, but we don't care of it in a perturba- 
tion treatment. The n th order perturbed wave function differs of a spin-eigen- 
function by (n + 1) th order terms only. In fact, the two formulations are formally 
quite the same, apart two terms of third order which are indicated in the right 
places. The only significant modification is the replacement of transition energy 
between configurations by transition energies between states. 

2. Second Order Energy 

The zeroth order energy is the energy of the Slater determinant built with the 
bonding bond orbitals. It is not in general the sum of terms which could be 
considered as bond energies. The first order energy correction is zero merely by 
definition of our perturbation series. The first non zero correction is the second- 
order one: 

E~2)= ~ [ <~ 
I~o E o -  E~ (5) 

where I labels the different excited configurations and 0 the ground state zeroth 
order configuration. E1 is the energy of the determinant [I>, that is 

E,=UI~II>. 
Configurations can be of only the mono-or diexcited types. 

1. 1I> is a mono-excited configuration. 

a) Monoe xc i t a t i on inabond : l I>=(~) (po la r i za t i onenergy )  

2v~(Eo - E,) (6) 
i 

with 
<ilh[i*> + ~ 2(ijli*j)+(iili*i) 

Vii = jg=i (7) 
E o - El 

b) Monoexcitations between two bonds (delocalization energy) 

Y~ E 2,~2(eo- e,) (s) 
i j ~ i  

with 
<il hi j*> (9) 

vq -- E o -  E~ 
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For a given bond i the total effect of the interactions of ]0) with (J~-) and (@*. * ) 

corresponds to a net charge transfer to or from the bond i. 
Let us remark here that in our method we don't really associate a virtual 

orbital i* to a lone pair localized orbital i. This has for evident consequence that 
there is only charge transfer f r o m  the lone pair. A well known empirical result in 
usual minimal basis LCAO delocalized MO methods, where atomic orbitals 
corresponding to lone pairs bear a charge always less than 2. Using localized 
orbitals allows to prove immediately this property which otherwise follows from 
the spinless first order density matrix property not to have occupancy numbers 
greater than 2 [-7]. 

2. [ I )  is a d iexc i ted  configuration.  
Due to ZDO hypothesis between bond orbitals only two kinds of diexcited 

configuration have a non zero effect: 

a) Diexc i ta t ion  in one bond: JI) = \ / - ~ - / ( i n t r a  

E d2(Eo - E,) 
i 

with (iiJ i* i*) 
d u - 

E o - E I 

b) M o n o e x c i t a t i o n s  in two bonds:  [ I ) =  

energy [9]) 
E E 4d~(Eo - e,) 

i<j 

with 
d q -  ( i j l i* j*)  (13) 

E o - E~ 

Viewed as if they represent the result of physical processes the fundamental four 
configurations interacting with ground state in the second-order energy can be 
referred as: polarization, delocalization, bond-diexcitation, two-bonds diexcitation. 

bond correlation energy [9] 

(lO) 

(11) 

( i*j*~ 
~ j - /  (interbond correlation 

(12) 

and 

3. Third Order Energy 

From our definition of the perturbation operator V it follows that 

E(1)=0, 

(IfglI)=O, 

E ( 3 ) = 2 y ' ~  ( 0 [ H I I ) ( I I H [ J ) ( J I H I 0 )  
,<s  (E~-f,)i~oo Z ~  (14) 
~:0 

The different types of interactions arise from the interaction of the four funda- 
mental types of configurations which have played a role in the second order 
energy. 
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1. ]I) and [J) are monoexcited configurations. 

a) , I ) = ( J ~ ) [ J ) = ( J f - ) p o l a r i z a t i o n  

~ 4vu(ij[ i'j*)vjj. (15) 
i j r  

When working in a basis of configurations one must also take in account inter- 

action between ~ -  and -~- which gives the matrix element (ill i'i*) and leads 

to a total contribution 
F~ (iil i 'i*) rE. (16) 
i 

/ j* ', / l* ~, 
- i - )  I J )  = ~ -  delocalization 

4 Z Z ~ (j* [hi 1") v~jv,~ - q ihll) vjivu(j, I • i). (17) 
i j l 

c) [ I ) = ( @ ) [ J ) = ( ~ ) p o l a r i s a t i o n a n d d e l o c a l i z a t i o n  

2 2 ~ 2((i* I h ]j*) viivij - (ilh [j) viivii). (18) 
i j e i  

2. ]I) is a monoexcited and ]J) a diexcited configuration. 

a) [I) = [J) -- ( - - ~ - )  polarization and bond-diexcitation 

2 ~ 2vu(vu(Eo - El) -- (iili* i) + (ii*]i* i*)) d , .  (19) 
i 

b) II) = [J) = ~ lj ] polarization and two bonds diexcitation 

2 ~ ~ 4vu(v~j(E o - EK) -- (jilj*i) + (ji* l j* i*)) d o (20) 
i j 4 : i  

with 

c) [I) = [J) = \ ~ - j .  / delocalization and two bonds diexcitation 

- 2 ~  ~ 2vgSj[h[i* ) d,j. (21) 
i jq=i 

3. ]I) and I J )  are diexcited configurations. 

a) [I) = \ ~ - / I  J )  = \ kj J two bonds diexcitations 

2 ~ ~ ~. Sd,j(jklj*k*) d,k(j, k # i). (22) 
i j k 

When working in a basis of configurations one must also take in account inter- 

action between - -  and - -  which gives the matrix element (ill i'i*) and 
\ ij / \ ' 0 " /  
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leads to a total contribution 

~ 4d~ (]jlj*j*). (23) 
i j ~ i  

(i*i*~ (i*j*~ 
b) [ I ) =  \ ~ - / l  J )  -- \ ~ /  bond diexcitation and two bonds diexcitation 

2 ~ ~ 4du(ijl iV*) dij. (24) 
i j r  

4. Typical Results for r Electrons Systems 

Let us illustrate the method in the framework of the widely used CNDO 
approximation of Pople and Segal [8]. The basis of the pure s and p orbitals is 
transformed into a basis of hybrids directed along the bonds. These hybrids are 
not specifically adjusted to take into account the particular geometry or to 
maximize the overlap; they are simple canonical sp, sp 2 or sp 3 hybrids according 
to the most trivial chemical picture. Bond orbitals were built as combinations of 
these hybrids two by two with coefficients taking in account bond polarity as it 
appears in population analysis of the corresponding SCF wavefunction. The 
influence of hybridization and polarity on the final result will be systematically 
investigated in the next paper of this series (part 4) [9]. 

The results are given for some representative molecules and are listed in 
Table 12. One can make the following remarks: 

a) polarization energy (ml) has been reduced by introducing convenient 
polarities of the bond orbitals. 

b) delocalization energy (m2) is the dominant contribution from monoexcited 
configurations to the second order energy. In formamide and in ketene half of this 
contribution comes from the ~-system delocalization. 

c) In pure a-systems the interaction with monoexcited configurations only, 
brings the energy practically to the SCF level. In this case the determinant which 
could be built from the monoexcited configurations is nearly the same as the SCF 
determinant. This is due to the fact that the SCF orbitals of pure a-systems are 
highly localizable according to standard localization criteria: Edmiston-Rueden- 
berg [11], Boys [12] or Magnasco-Perico [13]. Localizability always exceeds 95 %. 
7r-~orbitals are as a rule less localizable, even in the small systems studied here. We 
have seen that for ~ electrons, interaction with monoexcited configurations only 
at the second order is not in general sufficient to approach the SCF energy 
(Paper II, Table 4). 

d) Two bonds diexcitations include diexcitations on two bond orbitals located 
on the same physical bond in the case of multiple bonds. These two bonds diexcita- 
tions give important contributions to the second-order energy. This is the case 
for ethylene where (a~/a*Tc*) gives 95 % of the interbond correlation energy (d2). 
The same occurs in acetylene where the fundamental role is played by the con- 
figurations: (a~/a*~*), (a~/a*~-*) and (~/~*~*). The presence of triple bonds has 

2 The results reproduced in Table 1 have been obtained in a basis of spJn-eigenfunctions for mono- 
excited states ancl one bond diexcited states, and in a basis of configurations for two-bond diexcited 
states. This, somewhat hybrid, calculation does not introduce any significant differences with pure 
treatment in one kind of basis only. 
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for effect that the interbond correlation energy (d2) can be greater than the intra- 
bond correlation energy (dl). But in general the intra-bond correlation energy is 
the dominant term at the second order (see ethane for example). 

e) The total second order energy compares fairly well with the energy we 
obtain by a second-order perturbation applied to the SCF solution, using either 
delocalized canonical or localized orbitals [10] (see last two lines of Table 1). 

f) The main contributions to the third order energy correction arise from the 
interaction of: one and two-bonds diexcitations (d 1 - d2), two bonds diexcitations 
between themselves (d 2 - d 2 )  and delocalization monoexcited configurations 
between themselves (m 2 - m2). The first two contributions being positive and the 
second-one negative. When multiple bonds (especially triple) are present, an 
important term arises from the interaction of two bonds diexcitations between 
themselves; this comes evidently from two-bond diexcitations on the same 
physical bond. This behaviour of multiple bonds has some specific effect on the 
convergence of the perturbation series (cf. next paragraph g). 

This situation has generally for consequence that the third order correction 
is either very small or non negligible and positive. The second-order energy being 
certainly in general lower than the exact solution of configuration interaction [2], 
the third order energy is thus a better approximation of the true energy. 

Table 2. Order of magnitude of the computing times 

Increasing SCF + CI Our method 
accuracy perturbation 

SCF N 3 

Second order N 5 

Third order N 6 

Fully localized determinant: N 2 

Second order N 2 

Third order N 3 

The fourth-order correction would be in principle obtainable along the 
formulation outlined in Part II of this series [2]. This computation is totaly 
feasible from computational time point of view as it appears from Table 2. The 
necessity of including fourth order correction comes from the fact that it can be 
greater than the third order correction, which does not mean that the perturbation 
series diverges. Work is done in this direction and will appear in the next future. 

g) It's worthwhile to analyze the relative orders of magnitude of the various 
molecular integrals playing a role in the contribution of diexcited states. Two 
types of integrals are involved: (ii[i*i*), (/j] i*j*).Their expressions are 

(ii[i*i*) 2 2 = Ci  2 C i2 (g i l i l  2- gigi2 - 2 g l l i 2 )  , 

(ij[i*j*) = C n  Ci2 Cj l  Cj2 ( g i l j l  2- g i 2 j 2  - g i l j 2  - g i 2 j l ) -  

The first integral is proportional to the difference between a monocentric coulombic 
integral and a bicentric one on the bond. The second one represents a dipole-dipole 
interaction. If i and j are defined on two different physical bonds (that's on two 
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different spatial areas) this interaction is rather small: even for adjacent bonds it 
is about one fourth of (iili* i*). On the contrary if i and j are on the same physical 
bond (different chemical bonds in a multiple bond) (ijl i ' j*)  is of the same order of 
magnitude as (iiLi*i*); in CNDO approximations for homopolar bonds they are 
even equal. This explains the importance of the inter-bond term in the second- 
order correction for multiple bonds. 

Diexcited configurations interacting between themselves in the third order, 
one obtains different orders of magnitude for contributions arising in these 
different situations. 

The general term occurring in the summations for these contributions 
(formulas 22) is of the form: 

(i j I i ' j*)  Uk I J* k*) ( ik l i*k*)  
A E  2 

When multiple bonds are lacking, the greater terms are of the type 

(ii ] i ' i*)  (ik [ i* k*) 2 
A E  2 

For a double bond, the mixed diexcited configurations \ o-n / may interact 

with the \ aa- / and \ rc~- / intra-bond configurations giving a strong matrix 

element (~rclo-*=*) of the same order of magnitude as (i ill*i*). This gives to the 
greater contributions a magnitude approximatively equal to 

(iil i* i.)s 
A E  2 

Whence the significant positive third order correction appearing in molecules 
with double bonds. 

When triple bonds are present much more interactions of this types are 
possible leading to a still greater positive correction in the third order. 

This positive third-order correction gives an oscillatory behaviour to the 
Epstein-Nesbet perturbation ~series, which is strongly characteristic of triple 
bonds. In a Moller-Plesset [1] perturbation series, where the diagonal terms of 
the perturbation matrix are non zero important negative terms, the contributions 

<01VII 2> <IlVl1> 
d E  2 

compensate largely the preceeding positive contributions. This has for effect to 
eliminate the oscillatory behaviour and explains the satisfactory results obtained 
by Grimaldi o n N - N  with M.P. perturbation [15] and the behaviour of E.N. 
perturbation [16]. It is likely that one would not have the same conclusion on 
saturated molecules. 
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5. Conclusion 

The main defect of the method is the use of the CNDO hypothesis. It should 
be noticed, however, that it does not require the neglect of the differential overlap 
in the bonds, where it seems almost absurd, but only between the bonds. We have 
verified that the overlap between bond orbitals is never larger than 0.2 (even 
between adjacent bonds) and the ZDO approximation becomes as legitimate as 
in the ~-systems. The method thus offers a way to rationalize the CNDO hypo- 
thesis: the characteristic parameters of the bonds, which no longer pertain to the 
atomic orbitals but to the bond distributions, could be adjusted on ab initio 
calculations without simplification of the integrals in the bonds. 

In any event, if one accepts the CNDO hypothesis for calculating energies 
of large systems, the method appears very convenient, it gives better energy than 
the classical SCF procedure in a much shorter time (17 seconds to calculate the 
second and third order corrections on formamide, as opposed to the 30 minutes 
required to calculate via the SCF process followed by a second order correlation 
calculation on the IBM 1130). Table 2 gives the order of magnitude (in powers of 
the number N of electrons) of the time necessary for achieving the different steps 
of the classical SCF way (plus correlation) and of our method. 

The results for conformat ional  analysis are as reasonable as in the canonical 
CNDO SCF process. The rotational barrier (in ethane) arises from a difference 
(for the staggered and eclipsed conformations) mainly of the delocalization 
monoexcitations (cf. Table 3) 3. 

Table 3. Origin of  the rotational barrier in ethane 

Ethane Ethane Barrier 
(staggered) (eclipsed) 
eV eV eV kcal/mole 

Nuclear repulsion + 719.681 + 719.887 

Electronic energy SCF - 1231.550 - 1231.651 0.105 2.42 

Zeroth order - 1230.101 - 1230.288 0.019 0.44 
Second order - 1231.416 - 1231.519 0.103 2.37 
(monoexcitations only) 
Second order - 1233.416 - 1233.531 0.091 2.10 
Third order - 1233.407 - 1233.512 0.101 2.33 

3 It is interesting to compare this analysis of the rotational barrier with Sovers et al. results [17]. 
These authors build a determinant with the ls lone pairs and seven bonding bond orbitals, choosen 
from the classical hybridization scheme, and orthogonalized by a S-  a/2 procedure. This wave function 
could be considered as the zeroth order of a perturbation procedure in an ab initio scheme. It is inter- 
esting to notice that in their case the zeroth order wave function gives already the rotational barrier, 
while in our problem, it comes mainly from the delocalization excitations. Gilbert (private communica- 
tion) has noticed that in ab initio calculations, starting from S-1/2 orthogonalized bond orbitals, one 
gets a very small mixing of the bonding orbitals with the anti-bonding orbitals on the other bonds: the 
delocalization configurations i-~j* have a much more important role in the CNDO scheme than in 
analogous ab initio calculations. This might be due to the fact that the S 1/z orthogonalization in the 
ab initio calculation already gives a reasonable delocalization in the zeroth order wave function, while 
this delocalization is only obtained from the first order correction in the CNDO scheme. 
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A dif ferent  v e r s i o n  of  the  p r o g r a m  c o u l d  select  the  t e rms  w h i c h  u n d e r g o  

changes  wi th  a c h a n g e  in c o n f o r m a t i o n ,  to ca l cu la t e  d i rec t ly  these  c o n f o r m a t i o n a l  

d i f ferences  b e t w e e n  these  se lec ted  t e r m s  r a the r  t h a n  as differences b e t w e e n  t w o  

very  la rge  n u m b e r s .  F u r t h e r  a p p l i c a t i o n s  on  l a rge r  m o l e c u l e s  will  be  p r e s e n t e d  

at a la te r  t ime.  
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